
More Edit Distance Algorithms

Lecture 9

Edit distance

The edit distance between two strings
is defined as the minimum number of
edit operations needed to transform
one string into another
Edit operations are

insertion of 1 symbol,
deletion of 1 symbol or
replacement (substitution) of 1 symbol

The edit distance problem

Compute the edit distance between two
strings along with a sequence of the
operations which describe the
transformation

Analogy with the cheapest
path in a grid

t
a
c
a

S1
actaS2

E

S

0 1 2 3 4
0

1

2

3

4

1
insertion

1deletion 1

1

1
replacement

Cost 0 –
characters

match

An edit graph

t
a
c
a

S1
actaS2

j

i

0,0

An edit graph

for a pair of
strings S1

and S2 has
(N+1)*(M+1) vertices,
each labeled with a
corresponding pair (i,j), 0
≤

i ≤

N, 0 ≤

j

≤

M

The edges are directed
and their weight depends
on the specific string
problem: for the edit
distance problem – red
edges have cost 0, black
edges have cost 1

0,1 0,2 0,3 0,4

1,0

2,0

3,0

4,0

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

The cheapest path in the edit
graph

t
a
c
a

S1
actaS2

j

i

0,0

The cost of a
cheapest path from a
vertex (0,0) to vertex
(N,M) in this edit
graph corresponds to
the edit distance
between S1 and S2,
and the path itself
represents a series of
edit operations and
an optimal alignment
of S1 with S2

0,1 0,2 0,3 0,4

1,0

2,0

3,0

4,0

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Calculating the edit distance.
Base condition

t
a
c

1a
0S1

actaS2

j

i

0 1 2 3 4
0

1

2

3

4

The minimum number
of edit operations we
need in order to
transform an empty
string (of length 0) into
string a

is 1 (insertion)

Therefore the minimum
edit distance between ε
and a is 1

Calculating the edit distance.
Base condition

4t
3a
2c
1a
0S1

actaS2

j

i

0 1 2 3 4
0

1

2

3

4

The same is true for ε
and ac, aca, acat

Calculating the edit distance.
Base condition

4t
3a
2c
1a

43210S1
actaS2

j

i

0 1 2 3 4
0

1

2

3

4

In order to transform a
into ε, we need to
delete 1 character. This
is the best way to do it,
there is no other way.

The same for
transforming at, atc,
atca into ε with 2, 3, 4
deletions respectively

Calculating the edit distance.
Recursion for i>0 and j>0

4t
3a
2c
1a

43210S1

actaS2

j

i

There are only 3 different ways to move
trough the next cell in the grid, namely:

• Increase both i and j (diagonal)

with 1 edit operation if S1[i]≠S2[j]

with 0 cost if S1

[i]=S2

[j]

• Increase only i (insertion of S1[i] into S2)

with the cost 1

• Increase only j (deletion of S2[j] from S2)

with the cost 1

Calculating the edit distance.
Recursion for i>0 and j>0

4t
3a
2c
1a

43210S1

actaS2

j

i

Thus, if we know the edit distance

D[i-1,j-1], D[i-1,j] and D[i,j-1], we can
correctly calculate D[i,j]

This is true since there are no other ways of
moving through cell [i][j], and reaching the
top, left and top-left corners by different
paths cannot produce a better value than is
already in these 3 cells, since they contain
the minimum cost by definition

Calculating the edit distance.
Recursion for i>0 and j>0

4t
3a
2c

32101a
43210S1

actaS2

j

i

D(i-1,j)+1

D(i,j) = min D(i,j-1)+1

D(i-1,j-1)+c(i,j)

0 if S1[i]=S2[j]

where c(i,j) =

1 if S1[i] ≠S2[j]

Calculating the edit distance.
Recursion for i>0 and j>0

4t
3a

21112c
32101a
43210S1

actaS2

j

i

D(i-1,j)+1

D(i,j) = min D(i,j-1)+1

D(i-1,j-1)+c(i,j)

0 if S1[i]=S2[j]

where c(i,j) =

1 if S1[i] ≠S2[j]

Calculating the edit distance.
Recursion for i>0 and j>0

4t
12223a
21112c
32101a
43210S1

actaS2

j

i

D(i-1,j)+1

D(i,j) = min D(i,j-1)+1

D(i-1,j-1)+c(i,j)

0 if S1[i]=S2[j]

where c(i,j) =

1 if S1[i] ≠S2[j]

Calculating the edit distance.
Recursion for i>0 and j>0

23234t
12223a
21112c
32101a
43210S1

actaS2

j

i

D(i-1,j)+1

D(i,j) = min D(i,j-1)+1

D(i-1,j-1)+c(i,j)

0 if S1[i]=S2[j]

where c(i,j) =

1 if S1[i] ≠S2[j]

The sequence of edit
operations

23234t
12223a
21112c
32101a
43210S1

actaS2

j

i

Place a character in S2
opposite to a gap in S1

Place a character in S1
opposite to a gap in S2

Place a character in S1
opposite to a character
in S2

S1 a - c a t

S2 a t c a -

Optimal alignment for two strings

S1 a - c a t

S2 a t c a -

Evolutionary explanation:

S2 evolved from S1 by a series of the following mutations:

Insertion of nucleotide T at position 2

Deletion of nucleotide T at position 5

An optimal alignment is not
unique

S1 - a t t a a g
S2 t a - t c a g

2 different alignments with the optimal minimal cost 3

S1 - a t t a a g
S2 t a t c a - g

The exact sequence of mutations cannot be determined

Edit distance as a measure of a
similarity

S1 a - c a t

S2 a t c a -

If the number of basic evolutionary events is small, we infer that the
divergence between S1 and S2 happened not so long time ago, and
that the two strings are still similar

The smaller is the edit distance between 2 strings, the more similar
they are

Dynamic programming with
electronic tables. Cost

Build the input table – the cost of passing through any
cell by diagonal
Create the distance table, fill the first row and the first
column according to the basic recursion
Insert the recursion formula in cell [1][1]:

C19= MIN(B18+C3,B19+1,C18+1)

Spread the formula to the rest of the table by drag-and-
release
Read the cost of the cheapest path in cell [N][M] – the
last cell of the cost table

Dynamic programming with
electronic tables. Cost

C19=MIN(B18+C3,B19+1,C18+1)

Current cell:
i=C, j=19 i-1=B,

j-1=18
i-1=B,
j=19

i=C,
j-1=18

The cost of passing through the
corresponding cell of the input table

Dynamic programming with
electronic tables. Forward path

C35=
IF(B18+C3<B19+1,

IF(B18+C3<C18+1,
"DownRight",
"Right"),

"Down")

IF(B18+C3<B19+1)
IF(B18+C3<C18+1)

C35="DownRight“
ELSE

C35="Right“
ELSE

C35="Down"

Excel code

Shows one of the possible paths to obtain the smallest cost for a path from (0,0)
to the current cell

Dynamic programming with
electronic tables. Backward path

C49=
IF(C35="Down",

"Up",
IF(C35="Right",

"Left",
"UpLeft"))

IF(C35 ="Down“)
C49=“Up”

ELSE
IF(C35=“Right”)

C49=“Left“
ELSE

C49=“UpLeft“

Excel code

Replacing by the opposite direction – from the destination cell to the source cell

Dynamic programming with
electronic tables. Traceback

B60=
IF(AND(C61="X",C49="UpLeft"),

"X",
IF(AND(C60="X",C48="Left"),

"X",
IF(AND(B61="X",B49="Up"),

"X",
"-")))

IF(C61="X“AND C49="UpLeft")
B60="X"

ELSE IF(C60="X“ AND C48="Left")
B60="X"

ELSE IF(B61="X“ AND B49="Up")
B60="X“

ELSE
B60=“-"

Excel code

By placing X in the destination cell, this code reconstructs the path which gave
the total minimum cost: cell is marked X if the path went through this cell,
otherwise it is marked -.

Alternative: write the program
(add the traceback and the output of the path)

Input: array diagonalCost (NxM)
allocate array DPTable (NxM)

algorithm getCheapestCost()
fillDPTable()
return DPTable [N] [M]

algorithm fillDPTable()
DPTable [0][0]:=0
for i from 1 to N:

DPTable [i][0]:=i
for j from 1 to M:

DPTable [0][j]:=j
for i from 1 to N:

for j from 1 to M:
DPtable [i][j]:=min (DPtable [i-1][j-1]+ diagonalCost [i][j],

DPtable [i-1][j]+1, DPtable [i][j-1]+ 1)

Complexity of the edit distance
computation

Quadratic - O(NM),
Where N is the length of S1 , M is the length of S2

What if N and M are very large?
2 main problems:

Quadratic running time
Quadratic space

ED computation in a linear space.
The algorithm by Hirschberg

The time complexity is proportional to
the number of edges in the edit graph:
O(NM)
The space complexity is proportional to
the number of vertices in the edit
graph, since for each vertex we need to
store the best incoming edge: O(NM)

ED computation. Space

For very long strings, the quadratic
computation time is not as bad as the
quadratic space required in order to
store all the traceback pointers
The quadratic space is a bottleneck of
these algorithms

If we only want the value
D[N][M]

a t c a t g

0 1 2 3 4 5 6

a 1 0 1 2 3 4 5

c

a

t

a

g

If we only want the value
D[N][M]

a t c a t g

a 1 0 1 2 3 4 5

c 2 1 1 1 2 3 4

a

t

a

g

We don’t need row 0
for computing values
in row 3

If we only want the value
D[N][M]

a t c a t g

a

c 2 1 1 1 2 3 4

a 3 2 2 2 1 2 3

t

a

g

If we only want the value
D[N][M]

a t c a t g

a

c

a 3 2 2 2 1 2 3

t 4 3 2 3 2 1 2

a

g

If we only want the value
D[N][M]

a t c a t g

a

c

a

t 4 3 2 3 2 1 2

a 5 4 3 3 3 2 2

g

If we only want the value
D[N][M]

a t c a t g

a

c

a

t

a 5 4 3 3 3 2 2

g 6 5 4 4 4 3 2

Then we don’t need
more space than to
store 2 rows of a table

Since for computing
row i

we only need to
know values in the row
i-1, so the values in
rows before i-1 can be
discarded

This computation can
be performed in linear
space O(N)

But in order to actually find a
series of edit operations

a t c a t g

a

c

a

t

a 5 4 3 3 3 2 2

g 6 5 4 4 4 3 2

We need to store the
pointers for each
vertex in the entire
graph in order to be
able to trace the path
back

How did we
get there with

D=2?

The median border in the graph

a t c a t g

a

c

a

t

a

g

Let us set the median
line after the row N/2

Each path, including
the optimal path we
are looking for, crosses
the median line

The goal –

to find the
point in the median
line, where an optimal
path crosses it

All the paths running from the
source …

a t c a t g

0 1 2 3 4 5 6

a 1 0 1 2 3 4 5

c 2 1 1 1 2 3 4

a 3 2 2 2 1 2 3

3 t

2 a

1 g

6 5 4 3 2 1 0

a t c a t g

Compute the values of
D for the row above
the median line

Do not store all the
pointers, use only
space for 2 rows

Mark the last row with
the traceback pointers
to the previous row

All the paths running from the
source …

a t c a t g

a

c

a 3 2 2 2 1 2 3

3 t

2 a

1 g

6 5 4 3 2 1 0

a t c a t g

We have obtained the
set of values of the
best paths which run
from the source till
each point in the
median line

But we cannot choose
yet which of these
points belong to an
overall cheapest path

All the paths running from the
source and from the destination

a t c a t g

a

c

a 3 2 2 2 1 2 3

3 2 2 2 1 2 3 t

4 3 2 1 1 1 2 a

5 4 3 2 1 0 1 g

6 5 4 3 2 1 0

a t c a t g

Next, we compute all
the best paths running
from the destination
point (6,6) till each
point on the median
line, considering the
same strings in the
opposite direction

All the paths running from the
source and from the destination

a t c a t g

a

c

a 3 2 2 2 1 2 3

3 2 2 2 1 2 3 t

a

g

a t c a t g

This is enough
information to compute
the total cost of the
cheapest path passing
though each point on
the median line:

3+3=6
2+2=4
2+2=4
2+2=4
1+1=2
2+2=4
3+3=6

The median line hit point of the
best path

a t c a t g

a

c

a 3 2 2 2 1 2 3

3 2 2 2 1 2 3 t

a

g

a t c a t g

We infer that the
overall cheapest path
of cost 2 hits the
median line in point
(3,4):

3+3=6
2+2=4
2+2=4
2+2=4
1+1=2
2+2=4
3+3=6

The remaining parts
of the best path

a t c a t g

a

c

a

t

a

g

a t c a t g

Thus, we have found
a piece of the best
path

Next, we need only to
find the remaining
parts of the path
which can pass only
inside grey areas of
the grid

Recursive computation for NM/2
cells

a t c a t g

a

c

a

t

a

g

By the same bi-directional
algorithm we compute the piece
of the path which hits the
median line of the upper-left
and …

a t c a

0 1 2 3 4

a 1 0 1 2 3

2 1 0 1 2 c

3 2 1 0 1 a

4 3 2 1 0

a t c a

Recursive computation for NM/2
cells

a t c a t g

a

c

a

t

a

g

By the same bi-directional
algorithm we compute the piece
of the path which hits the
median line of the upper-left
and … the bottom-right squares

t g

0 1 2

t 1 0 1

a 1 1 2

1 0 1 g

2 1 0

t g

We know 1+2 pieces of the
best path

a t c a t g

a

c

a

t

a

g

Recursive computation for NM/4

a t c a t g

a

c

a

t

a

g

The areas
remaining for the
computation are in
grey

The Hirschberg’s algorithm.
Step 1. Computed NM cells

Each time we compute
two tables, whose total
size is 2 times smaller
than in the previous
step. In each
computation we find an
additional point
belonging to the
cheapest path, and
recording it

The Hirschberg’s algorithm.
Step 2. Computed NM/2 cells

Each time we compute
two tables, whose total
size is 2 times smaller
than in the previous
step. In each
computation we find
an additional point
belonging to the
cheapest path, and
recording it

The Hirschberg’s algorithm.
Step 3. Computed NM/4 cells

Each time we compute
two tables, whose total
size is 2 times smaller
than in the previous
step. In each
computation we find
an additional point
belonging to the
cheapest path, and
recording it

The Hirschberg’s algorithm.
Termination

When only 2 rows left
to be computed, we
can find the best path
using only 2 rows of
each table

The total path is
complete

The Hirschberg’s algorithm.
Time complexity

The algorithm computes values of
NM+NM/2+NM/4+….NM/(NM/2)=
= NM(1+1/2+1/4+…)=2NM cells

The time complexity is still O(NM)

The Hirschberg’s algorithm.
Space complexity

The algorithm never uses the space more
than for 2 rows of the table

The space complexity is O(N)

The pseudocode of the Hirschberg’s algorithm
can be found at:

http://en.wikipedia.org/wiki/Hirschberg%27s_al
gorithm

http://en.wikipedia.org/wiki/Hirschberg%27s_algorithm
http://en.wikipedia.org/wiki/Hirschberg%27s_algorithm

Time complexity

Improving the O(NM) running time

Algorithm by Miller & Myers
(The MM algorithm)

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

The main idea of the MM
algorithm is to move as far
as possible through a given
diagonal of the grid graph,
following the sequence of
matches

0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

The MM algorithm: definitions

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Diagonals:

Name each diagonal
according to the
coordinates of its starting
point

The 2 neighbor diagonals
of diagonal (0,0) are:

diagonal (1,0)

and diagonal (0,1)

The 2 neighbor diagonals
of diagonal (0,2) are

diagonal (0,1)

and diagonal (0,3)0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

The MM algorithm: definitions

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

A d-path in the edit graph is
a path which starts at point
(0,0) and has a cost exactly
d

A d-paths can end only at d
diagonals around the main
diagonal

This is because we cannot
move from the main
diagonal to (d+1,0) or
(0,d+1) diagonal in less
than d+1 insertions
(deletions)

0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

The MM algorithm

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

The algorithm
performs an
initialization and
D iterations,
where

D

is an edit
distance
between S1 and
S2

In each iteration
d

the algorithm
builds all d-

paths, extending
the d-1-paths

The MM algorithm

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

The key observation
is that if the final edit
distance is D, we
only need to
compute the grid
values in a strip
2D+1 around the
main diagonal

And we actually
need to compute the
values in at most
(2D+1)·N grid cells,
such obtaining the
O(ND) algorithm

The MM algorithm. Iteration 0

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

In the initialization
phase, we build the
path of
cost 0.

There is only one
possible path of a total
cost 0, which starts at
a source point (0,0)
and runs along the
main diagonal through
the sequence of
character matches

The MM algorithm. Iteration 1

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6
0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 1.

There can be only 3
possible paths with the cost
1 and they end at:
the main diagonal (0,0)
and its 2 neighbor diagonals

In order to find these paths,
we extend the 0-cost path
with 1 edit operation,
reaching each of the two
neighbor diagonals with a
jump of cost 1 and adding a
mismatch to the end of a 0-
path on the main diagonal

The MM algorithm. Iteration 1

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6
0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

We produced all
possible paths with a
total cost 1.

Then we extend the end of
each such path with a series
of consecutive matches
running as far as possible
down the corresponding
diagonal, such obtaining all
possible paths of a total cost
1

The MM algorithm. Iteration 1

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

We produced all possible
paths with a total cost 1.

The ends of all paths of a
total cost 1:

The MM algorithm. Iteration 2.

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 2.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (1,0) (2,0)

Since the paths which end
at all other diagonals, for
example (0,3), involve at
least 3 edit operations of
moving from the main
diagonal to the
corresponding diagonal.

The MM algorithm. Iteration 2.

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 2.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (1,0) (2,0)

First, we find the paths of
the total cost 2 which end at
diagonal (0,2) –

by adding a
jump from the end of the
best path with the cost 1
from diagonal (0,1)
and at diagonal (2,0) –
extending the path ended at
diagonal (1,0)

The MM algorithm. Iteration 2.
Dynamic programming

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6
0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 2.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (1,0) (2,0)

For diagonal (0,1) there are
2 possible ways of obtaining
paths of cost 2: by adding 1
mismatch from
or by adding 1 horizontal
jump from
We choose from between 2
the extension of a previous
path which runs further
along the diagonal:

The MM algorithm. Iteration 2.
Dynamic programming

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,3

3,0

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 2.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (1,0) (2,0)

The same logic is applied
for diagonal (1,0)
In this example both
extensions
are of equal quality, so we
chose one of them:

0,0

0,1

0,2

1,02,0

The MM algorithm. Iteration 2.
Dynamic programming

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,3

3,0

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 2.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (1,0) (2,0)

For diagonal (0,0) there are
3 possible extensions:

We choose the furthest
reaching along this
diagonal:

0,0

0,1

0,2

1,02,0

The MM algorithm. Iteration 2.
Dynamic programming

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,3

3,0

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 2.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (1,0) (2,0)

When the best path
extensions are made for
each diagonal, we extend
the path for each diagonal
with a series of matches,
such obtaining all the paths
with a total cost 2

0,0

0,1

0,2

1,02,0

The MM algorithm. Iteration 3.
Dynamic programming

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,3

3,0

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 3.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (0,3) (1,0)
(2,0) (3,0)

We apply the same dynamic
programming approach as
in iteration 2 for each such
diagonal in turn

0,0

0,1

0,2

1,02,0

The MM algorithm. Iteration 3.
Dynamic programming

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 3.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (0,3) (1,0)
(2,0) (3,0)

We apply the same dynamic
programming approach as
in iteration 2 for each such
diagonal in turn0,3

3,0 0,0

0,1

0,2

1,02,0

The MM algorithm. Iteration 3.
Dynamic programming

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 3.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (0,3) (1,0)
(2,0) (3,0)

We apply the same dynamic
programming approach as
in iteration 2 for each such
diagonal in turn0,3

3,0 0,0

0,1

0,2

1,02,0

The MM algorithm. Iteration 3.
Dynamic programming

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 3.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (0,3) (1,0)
(2,0) (3,0)

We apply the same dynamic
programming approach as
in iteration 2 for each such
diagonal in turn0,3

3,0 0,0

0,1

0,2

1,02,0

The MM algorithm. Iteration 3.
Dynamic programming

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 3.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (0,3) (1,0)
(2,0) (3,0)

We apply the same dynamic
programming approach as
in iteration 2 for each such
diagonal in turn0,3

3,0 0,0

0,1

0,2

1,02,0

The MM algorithm. Iteration 3.
Dynamic programming

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 3.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (0,3) (1,0)
(2,0) (3,0)

We apply the same dynamic
programming approach as
in iteration 2 for each such
diagonal in turn0,3

3,0 0,0

0,1

0,2

1,02,0

The MM algorithm. Iteration 3.
Dynamic programming

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 3.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (0,3) (1,0)
(2,0) (3,0)

We apply the same dynamic
programming approach as
in iteration 2 for each such
diagonal in turn0,3

3,0 0,0

0,1

0,2

1,02,0

The MM algorithm. Iteration 3.
Dynamic programming

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 3.

These paths can end only at
diagonals:
(0,0) (0,1) (0,2) (0,3) (1,0)
(2,0) (3,0)

Next, we extend each path
with a series of matches
along the corresponding
diagonal0,3

3,0 0,0

0,1

0,2

1,02,0

The MM algorithm.
The destination

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

We produce all possible
paths with a total cost 3.

At this point, one of paths
with a total cost 3 has
reached the destination –
point (6,6)

The algorithm terminates,
and D=3

The MM algorithm.
The complexity

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

Note that we did not
compare some possible
pairs of symbols in S1 and
S2 (dark grey)

We have worked with no
more than 2D+1 diagonals.
The length of each diagonal
is at most N

(if N>=M)

So, the total complexity is
O(D●N)

Thus, the algorithm
performs well for similar
strings (with a small edit
distance)

The MM algorithm –
pseudocode I

algorithm MM_Edit_Distance (S1, S2)
destinationReached:=false
d:=0
initializeDiagonalArrays()
snake(0,0)
while destinationReached=false do

d: =d+1
buildExtensions (d)

return d

algorithm initializeDiagonalArrays()
//allocate arrays of end points for the paths for

each diagonal
prevFrontier[N+M+1]
currentFrontier[N+M+1]

for i from 1 to N:
prevFrontier(i,0):=(-1,-1)

for i from 1 to M:
prevFrontier(0,i):=(-1,-1)

prevFrontier(0,0):=(0,0)

The MM algorithm –
pseudocode II

algorithm buildExtensions (I)
for i from I down to 1:

currentFrontier(i,0)=bestExtension (i, 0)
currentFrontier(0,i)=bestExtension (0,i)

/* main diagonal at last */
currentFrontier(0,0)=bestExtension (0,0)

for i from I down to 1:
prevFrontier(i,0)= currentFrontier (i,0)
prevFrontier(0,i)= currentFrontier (0,i)

prevFrontier(0,0)= currentFrontier (0,0)

algorithm MM_Edit_Distance (S1, S2)
destinationReached:=false
d:=0
initializeDiagonalArrays()
snake(0,0)
while destinationReached=false do

d: =d+1
buildExtensions (d)

return d

The MM algorithm –
pseudocode III

algorithm bestExtension (diagonal name (i,j))
if i=0 and j=0: //the main diagonal

pointFromAbove: =max ((0,0), (prevFrontier(0,1).X+1, prevFrontier (0,1).Y))
pointFromBelow: = max ((0,0), (prevFrontier (1,0).X, prevFrontier (1,0).Y+1))
pointFromItself: =max((0,0),(prevFrontier (0,0).X+1, prevFrontier (0,0).Y+1))

else
if i=0: //the diagonals above the main diagonal

pointFromAbove:=max ((0,j), (prevFrontier (0,j+1).X+1, prevFrontier (0,j+1).Y))
pointFromBelow:= max ((0,j), (prevFrontier (0,j-1).X, prevFrontier (0,j+1).Y+1))

pointFromItself:=max((0,j),(prevFrontier (0,j).X+1, prevFrontier (0,j).Y+1))

if j=0: //the diagonals below the main diagonal
pointFromAbove:=max ((i,0), (prevFrontier (i-1,0).X+1, prevFrontier (i-1,0).Y))
pointFromBelow:= max ((i,0), (prevFrontier (i+1,0).X, prevFrontier (i+1,0).Y+1))
pointFromItself: =max((i,0),(prevFrontier (i,0).X+1, prevFrontier (i,0).Y+1))

currEnd: = max (pointFromAbove, pointFromBelow, pointFromItself)
currEnd: =snake (currEnd.X, currEnd.Y)
if currEnd=(N,M):

destinationReached:=true
return currEnd

The MM algorithm –
pseudocode IV

algorithm snake ((x,y))
while x<N and y<N and S1 [x]=S2 [y] do:

x:=x+1
y:=y+1

return (x,y)

algorithm MM_Edit_Distance (S1, S2)
destinationReached:=false
d:=0
initializeDiagonalArrays()
snake(0,0)
while destinationReached=false do

d: =d+1
buildExtensions (d)

return d

Faster Edit Distance
computation. An open problem

There are algorithms which perform
better for the case of large edit
distance.
The complexity of all these algorithms is
still quadratic in the worst case
The best result (four-Russians speed-
up) is O(N2/log N)
Can it be done better?

	More Edit Distance Algorithms
	Edit distance
	The edit distance problem
	Analogy with the cheapest path in a grid
	An edit graph
	The cheapest path in the edit graph
	Calculating the edit distance. Base condition
	Calculating the edit distance. Base condition
	Calculating the edit distance. Base condition
	Calculating the edit distance. Recursion for i>0 and j>0
	Calculating the edit distance. Recursion for i>0 and j>0
	Calculating the edit distance. Recursion for i>0 and j>0
	Calculating the edit distance. Recursion for i>0 and j>0
	Calculating the edit distance. Recursion for i>0 and j>0
	Calculating the edit distance. Recursion for i>0 and j>0
	The sequence of edit operations
	Optimal alignment for two strings
	An optimal alignment is not unique
	Edit distance as a measure of a similarity
	Complexity of the edit distance computation
	ED computation in a linear space. The algorithm by Hirschberg
	ED computation. Space
	If we only want the value D[N][M]
	If we only want the value D[N][M]
	If we only want the value D[N][M]
	If we only want the value D[N][M]
	If we only want the value D[N][M]
	If we only want the value D[N][M]
	But in order to actually find a series of edit operations
	The median border in the graph
	All the paths running from the source …
	All the paths running from the source …
	All the paths running from the source and from the destination
	All the paths running from the source and from the destination
	The median line hit point of the best path
	The remaining parts �of the best path
	Recursive computation for NM/2 cells
	Recursive computation for NM/2 cells
	We know 1+2 pieces of the best path
	Recursive computation for NM/4
	The Hirschberg’s algorithm. �Step 1. Computed NM cells
	The Hirschberg’s algorithm. �Step 2. Computed NM/2 cells
	The Hirschberg’s algorithm. �Step 3. Computed NM/4 cells
	The Hirschberg’s algorithm. �Termination
	The Hirschberg’s algorithm. �Time complexity
	The Hirschberg’s algorithm. �Space complexity
	Time complexity
	Algorithm by Miller & Myers �(The MM algorithm)
	The MM algorithm: definitions
	The MM algorithm: definitions
	The MM algorithm
	The MM algorithm
	The MM algorithm. Iteration 0
	The MM algorithm. Iteration 1
	The MM algorithm. Iteration 1
	The MM algorithm. Iteration 1
	The MM algorithm. Iteration 2.
	The MM algorithm. Iteration 2.
	The MM algorithm. Iteration 2. Dynamic programming
	The MM algorithm. Iteration 2. Dynamic programming
	The MM algorithm. Iteration 2. Dynamic programming
	The MM algorithm. Iteration 2. Dynamic programming
	The MM algorithm. Iteration 3. Dynamic programming
	The MM algorithm. Iteration 3. Dynamic programming
	The MM algorithm. Iteration 3. Dynamic programming
	The MM algorithm. Iteration 3. Dynamic programming
	The MM algorithm. Iteration 3. Dynamic programming
	The MM algorithm. Iteration 3. Dynamic programming
	The MM algorithm. Iteration 3. Dynamic programming
	The MM algorithm. Iteration 3. Dynamic programming
	The MM algorithm. �The destination
	The MM algorithm. �The complexity
	The MM algorithm – pseudocode I
	The MM algorithm – pseudocode II
	The MM algorithm – pseudocode III
	The MM algorithm – pseudocode IV
	Better Edit Distance computation. �An open problem
	Lecture8_Dynamicprogramming.pdf
	String Distance �and Dynamic Programming
	Life is similar
	Comparison and analogy
	Why compare biosequences
	Keep in mind
	A shift to approximate pattern matching
	Dynamic programming
	The cheapest path
	The path without a map
	Sub-problems approach
	The sub-problems approach
	The recurrence relation – �base condition
	The recurrence relation�(for i>0 and j>0)
	The recurrence relation
	The top-down (usual) recursion
	The recursion tree
	The recursion tree
	Dynamic programming steps
	Dynamic programming I
	The recurrence relation
	Dynamic programming II
	The bottom-up computation
	Fill values for i=0 and for j=0 �(the base recursion condition)
	Fill values for i=1 �(from left to right)
	Fill in the entire table �(left-to-right top-down)
	Dynamic programming III
	Keeping track of the source
	Keeping track of the source
	Keeping track of the source
	Trace back – �how did we get the path with the cost 3
	Dynamic programming with electronic tables. Cost
	Dynamic programming with electronic tables. Cost
	Dynamic programming with electronic tables. Forward path
	Dynamic programming with electronic tables. Backward path
	Dynamic programming with electronic tables. Traceback
	Alternative: write the program �(add the traceback and the output of the path)
	Complexity of the DP algorithm
	Edit distance
	Edit Operations
	String alignment
	Edit distance
	Optimal alignment
	The edit distance problem
	Analogy with the cheapest path
	The dynamic programming solution to the edit distance problem

