
More Edit Distance Algorithms 

Lecture 9



Edit distance

The edit distance between two strings
is defined as the minimum number of
edit operations needed to transform
one string into another
Edit operations are

insertion of 1 symbol,
deletion of 1 symbol or
replacement (substitution) of 1 symbol



The edit distance problem

Compute the edit distance between two
strings along with a sequence of the
operations which describe the
transformation



Analogy with the cheapest 
path in a grid
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An edit graph
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An edit graph

 

for a pair of 
strings S1

 

and S2 has 
(N+1)*(M+1) vertices, 
each labeled with a 
corresponding pair (i,j), 0 
≤

 

i ≤

 

N, 0 ≤

 

j

 

≤

 

M

The edges are directed 
and their weight depends 
on the specific string 
problem: for the edit 
distance problem – red 
edges have cost 0, black 
edges have cost 1
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The cheapest path in the edit 
graph
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The cost of a 
cheapest path from a 
vertex (0,0) to vertex 
(N,M) in this edit 
graph corresponds to 
the edit distance 
between S1 and S2, 
and the path itself 
represents a series of 
edit operations and 
an optimal alignment 
of S1 with S2
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Calculating the edit distance. 
Base condition
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The minimum number 
of edit operations we 
need in order to 
transform an empty 
string (of length 0) into 
string a

 

is 1 (insertion)

Therefore the minimum 
edit distance between ε
and a is 1



Calculating the edit distance. 
Base condition
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The same is true for ε
and ac, aca, acat



Calculating the edit distance. 
Base condition
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In order to transform a
into ε, we need to 
delete 1 character. This 
is the best way to do it, 
there is no other way.

The same for 
transforming at, atc, 
atca into ε with 2, 3, 4 
deletions respectively



Calculating the edit distance. 
Recursion for i>0 and j>0
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There are only 3 different ways to move 
trough the next cell in the grid, namely: 

• Increase both i and j (diagonal)

with 1 edit operation if S1[i]≠S2[j]

with 0 cost if S1

 

[i]=S2

 

[j]

• Increase only i (insertion of S1[i] into S2)

with the cost 1

• Increase only j (deletion of S2[j] from S2)

with the cost 1



Calculating the edit distance. 
Recursion for i>0 and j>0
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Thus, if we know the edit distance 

D[i-1,j-1], D[i-1,j] and D[i,j-1], we can 
correctly calculate D[i,j]

This is true since there are no other ways of 
moving through cell [i][j], and reaching the 
top, left and top-left corners by different 
paths cannot produce a better value than is 
already in these 3 cells, since they contain 
the minimum cost by definition



Calculating the edit distance. 
Recursion for i>0 and j>0
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D(i-1,j)+1

D(i,j) =     min     D(i,j-1)+1

D(i-1,j-1)+c(i,j)

0 if S1[i]=S2[j]

where c(i,j)    =

1 if S1[i] ≠S2[j] 



Calculating the edit distance. 
Recursion for i>0 and j>0
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D(i-1,j)+1

D(i,j) =     min     D(i,j-1)+1

D(i-1,j-1)+c(i,j)

0 if S1[i]=S2[j]

where c(i,j)    =

1 if S1[i] ≠S2[j] 



Calculating the edit distance. 
Recursion for i>0 and j>0
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D(i-1,j)+1

D(i,j) =     min     D(i,j-1)+1

D(i-1,j-1)+c(i,j)

0 if S1[i]=S2[j]

where c(i,j)    =

1 if S1[i] ≠S2[j] 



Calculating the edit distance. 
Recursion for i>0 and j>0

23234t
12223a
21112c
32101a
43210S1

actaS2

j

i

D(i-1,j)+1

D(i,j) =     min     D(i,j-1)+1

D(i-1,j-1)+c(i,j)

0 if S1[i]=S2[j]

where c(i,j)    =

1 if S1[i] ≠S2[j] 



The sequence of edit 
operations
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Place a character in S2 
opposite to a gap in S1

Place a character in S1 
opposite to a gap in S2

Place a character in S1 
opposite to a character 
in S2

S1 a - c a t

S2 a t c a -



Optimal alignment for two strings

S1 a - c a t

S2 a t c a -

Evolutionary explanation:

S2 evolved from S1 by a series of the following mutations:

Insertion of nucleotide T at position 2

Deletion of nucleotide T at position 5



An optimal alignment is not 
unique

S1 - a t t a a g
S2 t a - t c a g

2 different alignments with the optimal minimal cost 3

S1 - a t t a a g
S2 t a t c a - g

The exact sequence of mutations cannot be determined



Edit distance as a measure of a 
similarity

S1 a - c a t

S2 a t c a -

If the number of basic evolutionary events is small, we infer that the 
divergence between S1 and S2 happened not so long time ago, and 
that the two strings are still similar 

The smaller is the edit distance between 2 strings, the more similar 
they are 



Dynamic programming with 
electronic tables. Cost

Build the input table – the cost of passing through any
cell by diagonal
Create the distance table, fill the first row and the first
column according to the basic recursion
Insert the recursion formula in cell [1][1]:

C19= MIN(B18+C3,B19+1,C18+1)

Spread the formula to the rest of the table by drag-and-
release
Read the cost of the cheapest path in cell [N][M] – the
last cell of the cost table



Dynamic programming with 
electronic tables. Cost

C19=MIN(B18+C3,B19+1,C18+1)

Current cell: 
i=C, j=19 i-1=B,

j-1=18
i-1=B,
j=19

i=C,  
j-1=18

The cost of passing through the 
corresponding cell of the input table



Dynamic programming with 
electronic tables. Forward path

C35=
IF(B18+C3<B19+1,

IF(B18+C3<C18+1,
"DownRight",
"Right"),

"Down")

IF(B18+C3<B19+1)
IF(B18+C3<C18+1) 

C35="DownRight“
ELSE

C35="Right“
ELSE

C35="Down"

Excel code

Shows one of the possible paths to obtain the smallest cost for a path from (0,0) 
to the current cell 



Dynamic programming with 
electronic tables. Backward path

C49=
IF(C35="Down",

"Up",
IF(C35="Right",

"Left",
"UpLeft"))

IF(C35 ="Down“)
C49=“Up”

ELSE
IF(C35=“Right”) 

C49=“Left“
ELSE

C49=“UpLeft“

Excel code

Replacing by the opposite direction – from the destination cell to the source cell



Dynamic programming with 
electronic tables. Traceback

B60=
IF(AND(C61="X",C49="UpLeft"),

"X",
IF(AND(C60="X",C48="Left"), 

"X",
IF(AND(B61="X",B49="Up"),

"X",
"-")))

IF( C61="X“AND C49="UpLeft")
B60="X"

ELSE IF( C60="X“ AND C48="Left")
B60="X"

ELSE IF( B61="X“ AND B49="Up")
B60="X“

ELSE
B60=“-"

Excel code

By placing X in the destination cell, this code reconstructs the path which gave 
the total minimum cost: cell is marked X if the path went through this cell, 
otherwise it is marked -.



Alternative: write the program 
(add the traceback and the output of the path)

Input: array diagonalCost (NxM)
allocate array DPTable (NxM)

algorithm getCheapestCost( )
fillDPTable( )
return DPTable [N] [M]

algorithm fillDPTable()
DPTable [0][0]:=0
for i from 1 to N:

DPTable [i][0]:=i
for j from 1 to M:

DPTable [0][j]:=j
for i from 1 to N:

for j from 1 to M:
DPtable [i][j]:=min (DPtable [i-1][j-1]+ diagonalCost [i][j],

DPtable [i-1][j]+1, DPtable [i][j-1]+ 1)



Complexity of the edit distance 
computation

Quadratic - O(NM),
Where N is the length of S1 , M is the length of S2

What if N and M are very large?
2 main problems:

Quadratic running time
Quadratic space



ED computation in a linear space. 
The algorithm by Hirschberg

The time complexity is proportional to
the number of edges in the edit graph:
O(NM)
The space complexity is proportional to
the number of vertices in the edit
graph, since for each vertex we need to
store the best incoming edge: O(NM)



ED computation. Space

For very long strings, the quadratic
computation time is not as bad as the
quadratic space required in order to
store all the traceback pointers
The quadratic space is a bottleneck of
these algorithms



If we only want the value 
D[N][M]
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If we only want the value 
D[N][M]

a t c a t g

a 1 0 1 2 3 4 5

c 2 1 1 1 2 3 4

a

t

a

g

We don’t need row 0 
for computing values 
in row 3



If we only want the value 
D[N][M]
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If we only want the value 
D[N][M]
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If we only want the value 
D[N][M]
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If we only want the value 
D[N][M]

a t c a t g

a

c
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t

a 5 4 3 3 3 2 2

g 6 5 4 4 4 3 2

Then we don’t need 
more space than to 
store 2 rows of a table

Since for computing 
row i

 

we only need to 
know values in the row 
i-1, so the values in
rows before i-1 can be
discarded

This computation can 
be performed in linear 
space O(N)



But in order to actually find a 
series of edit operations

a t c a t g
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a 5 4 3 3 3 2 2

g 6 5 4 4 4 3 2

We need to store the 
pointers for each 
vertex in the entire 
graph in order to be 
able to trace the path 
back

How did we 
get there with 

D=2?



The median border in the graph
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Let us set the median 
line after the row N/2

Each path, including 
the optimal path we 
are looking for, crosses 
the median line

The goal –

 

to find the 
point in the median 
line, where an optimal 
path crosses it



All the paths running from the 
source …
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6 5 4 3 2 1 0

a t c a t g

Compute the values of 
D for the row above 
the median line

Do not store all the 
pointers, use only 
space for 2 rows 

Mark the last row with 
the traceback pointers 
to the previous row



All the paths running from the 
source …

a t c a t g
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6 5 4 3 2 1 0

a t c a t g

We have obtained the 
set of values of the 
best paths which run 
from the source till 
each point in the 
median line

But we cannot choose 
yet which of these 
points belong to an 
overall cheapest path



All the paths running from the 
source and from the destination
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Next, we compute all 
the best paths running 
from the destination 
point (6,6) till each 
point on the median 
line, considering the 
same strings in the 
opposite direction



All the paths running from the 
source and from the destination
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This is enough 
information to compute 
the total cost of the 
cheapest path passing 
though each point on 
the median line:

3+3=6
2+2=4
2+2=4
2+2=4
1+1=2
2+2=4
3+3=6



The median line hit point of the 
best path
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We infer that the 
overall cheapest path 
of cost 2 hits the 
median line in point 
(3,4):

3+3=6
2+2=4
2+2=4
2+2=4
1+1=2
2+2=4
3+3=6



The remaining parts 
of the best path
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Thus, we have found 
a piece of the best 
path

Next, we need only to 
find the remaining 
parts of the path 
which can pass only 
inside grey areas of 
the grid



Recursive computation for NM/2 
cells
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By the same bi-directional 
algorithm we compute the piece 
of the path which hits the 
median line of the upper-left 
and …
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Recursive computation for NM/2 
cells
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By the same bi-directional 
algorithm we compute the piece 
of the path which hits the 
median line of the upper-left 
and … the bottom-right squares
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a 1 1 2

1 0 1 g

2 1 0

t g



We know 1+2 pieces of the 
best path
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Recursive computation for NM/4
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The areas 
remaining for the 
computation are in 
grey



The Hirschberg’s algorithm. 
Step 1. Computed NM cells

Each time we compute 
two tables, whose total 
size is 2 times smaller 
than in the previous 
step. In each 
computation we find an 
additional point 
belonging to the 
cheapest path, and 
recording it



The Hirschberg’s algorithm. 
Step 2. Computed NM/2 cells

Each time we compute 
two tables, whose total 
size is 2 times smaller 
than in the previous 
step. In each 
computation we find 
an additional point 
belonging to the 
cheapest path, and 
recording it



The Hirschberg’s algorithm. 
Step 3. Computed NM/4 cells

Each time we compute 
two tables, whose total 
size is 2 times smaller 
than in the previous 
step. In each 
computation we find 
an additional point 
belonging to the 
cheapest path, and 
recording it



The Hirschberg’s algorithm. 
Termination

When only 2 rows left 
to be computed, we 
can find the best path 
using only 2 rows of 
each table

The total path is 
complete 



The Hirschberg’s algorithm. 
Time complexity

The algorithm computes values of
NM+NM/2+NM/4+….NM/(NM/2)=
= NM(1+1/2+1/4+…)=2NM cells

The time complexity is still O(NM)



The Hirschberg’s algorithm. 
Space complexity

The algorithm never uses the space more
than for 2 rows of the table

The space complexity is O(N)

The pseudocode of the Hirschberg’s algorithm 
can be found at:

http://en.wikipedia.org/wiki/Hirschberg%27s_al 
gorithm

http://en.wikipedia.org/wiki/Hirschberg%27s_algorithm
http://en.wikipedia.org/wiki/Hirschberg%27s_algorithm


Time complexity

Improving the O(NM) running time



Algorithm by Miller & Myers 
(The MM algorithm)
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The main idea of the MM 
algorithm is to move as far 
as possible through a given 
diagonal of the grid graph, 
following the sequence of 
matches
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The MM algorithm: definitions
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Diagonals:

Name each diagonal 
according to the 
coordinates of its starting 
point

The 2 neighbor diagonals
of diagonal (0,0) are: 

diagonal (1,0) 

and diagonal (0,1)

The 2 neighbor diagonals 
of diagonal (0,2) are 

diagonal (0,1) 

and diagonal (0,3)0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0



The MM algorithm: definitions
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A d-path in the edit graph is 
a path which starts at point 
(0,0) and has a cost exactly 
d

A d-paths can end only at d 
diagonals around the main 
diagonal

This is because we cannot 
move from the main 
diagonal to (d+1,0) or 
(0,d+1) diagonal in less 
than d+1 insertions 
(deletions)
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The MM algorithm
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The algorithm 
performs an 
initialization and 
D iterations, 
where 

D

 

is an edit 
distance 
between S1 and 
S2

In each iteration 
d

 

the algorithm 
builds all d-

 
paths, extending 
the d-1-paths



The MM algorithm
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The key observation 
is that if the final edit 
distance is D, we 
only need to 
compute the grid 
values in a strip 
2D+1 around the 
main diagonal

And we actually 
need to compute the 
values in at most 
(2D+1)·N grid cells, 
such obtaining the 
O(ND) algorithm 



The MM algorithm. Iteration 0
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In the initialization 
phase, we build the 
path of
cost 0. 

There is only one 
possible path of a total 
cost 0, which starts at 
a source point (0,0) 
and runs along the 
main diagonal through 
the sequence of 
character matches



The MM algorithm. Iteration 1
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We produce all possible 
paths with a total cost 1.

There can be only 3 
possible paths with the cost 
1 and they end at:
the main diagonal (0,0)
and its 2 neighbor diagonals

In order to find these paths, 
we extend the 0-cost path 
with 1 edit operation, 
reaching each of the two 
neighbor diagonals with a 
jump of cost 1 and adding a 
mismatch to the end of a 0-
path on the main diagonal



The MM algorithm. Iteration 1
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We produced all 
possible paths with a 
total cost 1.

Then we extend the end of 
each such path with a series 
of consecutive matches 
running as far as possible 
down the corresponding 
diagonal, such obtaining all 
possible paths of a total cost 
1



The MM algorithm. Iteration 1
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We produced all possible 
paths with a total cost 1.

The ends of all paths of a 
total cost 1:



The MM algorithm. Iteration 2. 
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We produce all possible 
paths with a total cost 2.

These paths can end only at 
diagonals:
(0,0) (0,1) (0,2) (1,0) (2,0)

Since the paths which end 
at all other diagonals, for 
example (0,3), involve at 
least 3 edit operations of 
moving from the main 
diagonal to the 
corresponding diagonal.



The MM algorithm. Iteration 2. 
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We produce all possible 
paths with a total cost 2.

These paths can end only at 
diagonals:
(0,0) (0,1) (0,2) (1,0) (2,0)

First, we find the paths of 
the total cost 2 which end at 
diagonal (0,2) –

 

by adding a 
jump from the end of the 
best path with the cost 1 
from diagonal (0,1)
and at diagonal (2,0) –
extending the path ended at 
diagonal (1,0)



The MM algorithm. Iteration 2. 
Dynamic programming 
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We produce all possible 
paths with a total cost 2.

These paths can end only at 
diagonals:
(0,0) (0,1) (0,2) (1,0) (2,0)

For diagonal (0,1) there are 
2 possible ways of obtaining 
paths of cost 2: by adding 1 
mismatch from
or by adding 1 horizontal 
jump from 
We choose from between 2 
the extension of a previous 
path which runs further 
along the diagonal: 
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with a total cost 2
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We produce all possible 
paths with a total cost 3.

These paths can end only at 
diagonals:
(0,0) (0,1) (0,2) (0,3) (1,0) 
(2,0) (3,0)

Next, we extend each path 
with a series of matches 
along the corresponding 
diagonal0,3

3,0 0,0

0,1

0,2

1,02,0



The MM algorithm. 
The destination 

g
a
t
a
c
a

S1
gcactaS2

j

i

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

1,02,03,0

0,4

0,5

4,05,0

We produce all possible 
paths with a total cost 3.

At this point, one of paths 
with a total cost 3 has 
reached the destination –
point (6,6)

The algorithm terminates, 
and D=3



The MM algorithm. 
The complexity 
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Note that we did not 
compare some possible 
pairs of symbols in S1 and 
S2 (dark grey)

We have worked with no 
more than 2D+1 diagonals. 
The length of each diagonal 
is at most N

 

(if N>=M)

So, the total complexity is 
O(D●N)  

Thus, the algorithm 
performs well for similar 
strings (with a small edit 
distance)



The MM algorithm – 
pseudocode I

algorithm MM_Edit_Distance (S1, S2 )
destinationReached:=false
d:=0
initializeDiagonalArrays()
snake(0,0)
while destinationReached=false do

d: =d+1
buildExtensions (d)

return d

algorithm initializeDiagonalArrays()
//allocate arrays of end points for the paths for 

each diagonal
prevFrontier[N+M+1]
currentFrontier[N+M+1]

for i from 1 to N:
prevFrontier(i,0):=(-1,-1)

for i from 1 to M:
prevFrontier(0,i):=(-1,-1)

prevFrontier(0,0):=(0,0)



The MM algorithm – 
pseudocode II

algorithm buildExtensions (I)
for i from I down to 1: 

currentFrontier(i,0)=bestExtension (i, 0)
currentFrontier(0,i)=bestExtension (0,i )

/* main diagonal at last */
currentFrontier(0,0)=bestExtension (0,0)

for i from I down to 1:
prevFrontier(i,0)= currentFrontier (i,0)
prevFrontier(0,i)= currentFrontier (0,i)

prevFrontier(0,0)= currentFrontier (0,0)

algorithm MM_Edit_Distance (S1, S2)
destinationReached:=false
d:=0
initializeDiagonalArrays()
snake(0,0)
while destinationReached=false do

d: =d+1
buildExtensions (d)

return d



The MM algorithm – 
pseudocode III

algorithm bestExtension (diagonal name (i,j))
if i=0 and j=0: //the main diagonal

pointFromAbove: =max ((0,0), (prevFrontier(0,1).X+1, prevFrontier (0,1).Y))
pointFromBelow: = max ((0,0), (prevFrontier (1,0).X, prevFrontier (1,0).Y+1))
pointFromItself: =max((0,0),( prevFrontier (0,0).X+1, prevFrontier (0,0).Y+1))

else
if i=0: //the diagonals above the main diagonal

pointFromAbove:=max ((0,j), (prevFrontier (0,j+1).X+1, prevFrontier (0,j+1).Y))
pointFromBelow:= max ((0,j), (prevFrontier (0,j-1).X, prevFrontier (0,j+1).Y+1))

pointFromItself:=max((0,j),( prevFrontier (0,j).X+1, prevFrontier (0,j).Y+1))

if j=0: //the diagonals below the main diagonal
pointFromAbove:=max ((i,0), (prevFrontier (i-1,0).X+1, prevFrontier (i-1,0).Y))
pointFromBelow:= max ((i,0), (prevFrontier (i+1,0).X, prevFrontier (i+1,0).Y+1))
pointFromItself: =max((i,0),( prevFrontier (i,0).X+1, prevFrontier (i,0).Y+1))

currEnd: = max (pointFromAbove, pointFromBelow, pointFromItself)
currEnd: =snake (currEnd.X, currEnd.Y)
if currEnd=(N,M):

destinationReached:=true
return currEnd



The MM algorithm – 
pseudocode IV

algorithm snake ((x,y))
while x<N and y<N and S1 [x]=S2 [y] do:

x:=x+1
y:=y+1

return (x,y)

algorithm MM_Edit_Distance (S1, S2)
destinationReached:=false
d:=0
initializeDiagonalArrays()
snake(0,0)
while destinationReached=false do

d: =d+1
buildExtensions (d)

return d



Faster Edit Distance 
computation. An open problem

There are algorithms which perform
better for the case of large edit
distance.
The complexity of all these algorithms is
still quadratic in the worst case
The best result (four-Russians speed-
up) is O(N2/log N)
Can it be done better?
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